Unusual Electronic Transport and Magnetism in Titanium Oxide Based Semiconductors and Metals
نویسندگان
چکیده
Title of dissertation: UNUSUAL ELECTRONIC TRANSPORT AND MAGNETISM IN TITANIUM OXIDE BASED SEMICONDUCTORS AND METALS Shixiong Zhang, Doctor of Philosophy, 2007 Dissertation directed by: Professor T. Venky Venkatesan Department of Physics The main objective of this thesis was to explore the structural, electrical, magnetic and optical properties of titanium based novel oxide thin films, such as transparent conducting oxides (TCOs) and diluted magnetic semiconductors (DMSs), so as to be able to realize optoelectronics and spintronics applications. I demonstrated that niobium doped titanium dioxide (TiO2) in its epitaxial anatase phase grown at certain condition is an intrinsic transparent conducting oxide, with both its conductivity and transparency comparable to that of the commercial transparent electrode In-Sn-O being widely used in current optoelectronic devices. I investigated the growth parameter dependence of structure and conductivity of this material. It was found that the growth temperature is a crucial parameter for the structural quality as well as the electron mobility, while the oxygen partial pressure is essential for the conduction electron concentration. The excellent conductivity of niobium doped TiO2 should be attributed to the extremely high solubility of niobium in the TiO2 matrix as well as a very shallow donor level created in the TiO2 band gap. I investigated several important oxide based DMS systems, such as niobium and cobalt dual doped TiO2, transition metal (TM) element doped SrTiO3 etc. I found that niobium dual doping is an effective way to introduce carriers into the classical Co: TiO2 system, which provides the feasibility of studying the RKKY interaction in this system by chemical doping. Our detailed characterization of TM doped SrTiO3 questioned the intrinsic nature of the ferromagnetism observed by other groups. By a systematic study of Hall effect on superparamagnetic Co-(La,Sr)TiO3 thin films, I was able to demonstrate that the magnitude of the anomalous Hall effect is a way to distinguish between intrinsic and extrinsic DMS. A Kondo effect was observed in niobium doped TiO2 grown at certain condition. The origin of magnetic moments in this system was suggested to be from the cation vacancy defects. This observation of defect magnetism in conventional non-magnetic TiO2 may shed light on the occurrence of ferromagnetism in oxide diluted magnetic semiconductors. UNUSUAL ELECTRONIC TRANSPORT AND MAGNETISM IN TITANIUM OXIDE BASED SEMICONDUCTORS AND METALS
منابع مشابه
Itinerant magnetism in doped semiconducting β-FeSi2 and CrSi2
Novel or unusual magnetism is a subject of considerable interest, particularly in metals and degenerate semiconductors. In such materials the interplay of magnetism, transport and other Fermi liquid properties can lead to fascinating physical behavior. One example is in magnetic semiconductors, where spin polarized currents may be controlled and used. We report density functional calculations p...
متن کاملElectronic structure, donor and acceptor transitions, and magnetism of 3d impurities in In2O3 and ZnO
3d transition impurities in wide-gap oxides may function as donor/acceptor defects to modify carrier concentrations, and as magnetic elements to induce collective magnetism. Previous first-principles calculations have been crippled by the LDA error, where the occupation of the 3d-induced levels is incorrect due to spurious charge spilling into the misrepresented host conduction band, and have o...
متن کاملElectrophoretic Synthesis of Titanium Oxide Nanotubes
In the current research project, sol-gel electrophoresis technique was utilized to grow titanium dioxide (TiO2) nanotubes. A titanium sol was prepared using organometallic precursors of titanium to fill the template channels. The prepared solwas driven into nanopores of porous anodic aluminum oxide templates under the influence of a DC electric field to form nanotubes on the pore walls. Tube fo...
متن کاملFirst Principle Study of MC (M= Al, Ga, and In) at Equilibrium and under Negative Stress
The electronic and magnetic properties of the hypothetical compounds of MC (M=Al, Ga and In) are investigated by using first-principle calculations and pseudopotential plane wave self-consistent field method based on density functional theory. In order to find the most stable phase of MC (M=Al, Ga and In), we study them in zinc-blende (ZB), rocksalt (RS), wurtzite and NiAs crystal structures. W...
متن کاملMetal-Oxide Interfaces in Magnetic Tunnel Junctions
Metal-oxide interfaces play an important role in spintronics—a new area of microelectronics that exploits spin of electrons in addition to the traditional charge degree of freedom to enhance the performance of existing semiconductor devices. Magnetic tunnel junctions (MTJs) consisting of spin-polarized ferromagnetic electrodes sandwiching an insulating barrier are such promising candidates of s...
متن کامل